Session 3: Effective fish handling systems

Hanne Digre, PhD SINTEF Fisheries and Aquaculture, Norway

Topics presented

- i. Fish slaughtering systems (including stunning and bleeding)
- ii. Cooling systems and storage
- Focus on cod, haddock and saithe
- Main objective:
 - To improve the fish quality and the EHS (environment, health and safety) for the fishermen and to make the fish handling system more effective

Fish handling systems onboard – Critical factors

Slaughtering process

Storage

Improper catch handling and chilling of fish: Possible effects on flesh <u>quality</u>

- External damages (e.g. scale loss, skin marks)
- Blood spots/ discolouration in the fillet
- Soft flesh
- Fillet gaping
- Reduced freshness
- Paler skin and flesh (depending on species)
- Excessive drip loss and reduced water holding capacity (through flesh when cooked)

(Approx. 7-10 days ice storage: Spoilage, microorganisms,TMA, lipid oxidation, etc)

Improper catch handling and chilling of fish: Consequences for fish processing industry

- Lower yield and fillet quality
- Production problems (e.g. soft texture)
- Loss of freshness Reduced shelf life
- Low cost products
- Reduced profitability in the processing industry
- Improved catch handling may improve fillet quality and increase yield.
- Changing attitudes directed towards quality rather than quantity may therefore contribute to more sustainable fisheries

Future processing line

Catching process

- Large catches difficult to control catch sizes
- Fishermen's attitude...?

50 tonn til "Gunnar K"

"Gunnar K" fra Myre har satt ny <u>ferskfiskrekord</u> av en kystbåt i Myre havn. Den kom opp med 50 tonn i kveld.

EFTP – Future Fishing Vessel Technologies, Sicily June 6-7th 2012

Transferring fish from sea to vessel

Different methods:

Typical damage due to pumping

8

Electrical stunning

The principle

Electrical stunning makes it possible to immediate further process the fish after it is taken on board.

Advantages

- Fish welfare branding and consumer demands
- Shorter time period from catch to processing
- EHS (environment, health and safety) Improved safety and less heavy manual work for the fishermen
- A way of achieving proper bleeding of fish on board!

Disadvantage

- Shorter pre-rigor period
- Space demanding (prototype: approx. 0.4×0.4×1.0 m)
- More research are needed to optimization for different species and fish sizes

SINTEF + Seaside

Fish behaviour observations during recovery from electrostunning

		Swimming		Balance		Breath		VOR	
Totals	n	0=some	1=no	0=some	1=no	0=some	1=no	0=yes	1=no
Cod	63	0	63	1	62	4	59	5	29
Haddoc	20	0	20	0	20	2	18	0	10

- Fish behaviour observations:
 - 'Eye roll' (VOR)
 - Swimming activity
 - Balance
 - Breath

> 2 % not properly stunned

Cod – Blood lactate, pH and twitch tester

Twitch response, score (0-2): 2 = Strong twitch; whole body twitch, 1 = Weaker twitch; in (small) restricted areas of the fish surface, 0 = No twitch.

EFTP – Future Fishing Vessel Technologies, Sicily June 6-7th 2012

Bleeding and gutting

Focus area: Improving bleeding routines

Problem: Inadequate bleeding, blood spots in the filets Good bleeding: Immediate bleeding of live fish (or no later than 30 min post mortem)

Automatic gill cutting – also onboard vessels

Design of vessel

Drawing of a modern 28 m fishing vessel with 4 m space for processing of fish

Leave space for fish processing!

Proper chilling

- Goal: To improve the cooling conditions for wild fish – a faster chilling rate (< 0°C) and maintains of the low temperature from catch to market
- Different methods can be used (ice, RSW, slurry ice etc)

Slurry ice

- Ice-water mixtures with added salt to achieve subzero temperatures, for instance seawater
- Suspension containing typically 25-30% small ice crystals
- Temperature is a function of the salinity in the mixture, typically -2°C
- Partial freezing

Erikson et al, unpublished

Piñeiro et al, 2004

Super-chilling

Advantages

- Faster chilling than traditional flake ice
- Less physical damages of fish compared to traditional flake ice
- Easier to work with
- Better gill odour
- Lower
 - microbial activity
 - biochemical degradation
 - lipid oxidation (after 19 days of storage)

Disadvantages

- Structure changes texture?
- Faster glycolysis and enzymatic reactions protein denaturation
- Excessive drip loss
- Cold stiffness
- Uptake of salt
- Cloudy eyes
- Lower water holding capacity
- Temperature must be kept constant!

Conclusion – effective fish handling systems

- Improved fishing gears gentle capture and reduced catch sizes
 - Time and amount of fish in the gear are critical factors!
- New gentle handling systems
 - New systems for catch loading
 - New live fish handling systems keeping fish alive until bleeding!
 - Immediate and gentle fish handling on board to achieve a proper bleeding
 - Introduction of a stunning method facilitates rapid fish handling
 - Automation and sorting systems
 - Space on board for fish processing
 - Ergonomically design
- Good chilling is important. The use of new technologies needs to be optimized.

